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DNA computing is an emerging field that aims at enabling more efficient data storage and
processing. One principle of DNA computing is to encode some information (e.g., image, video,
programming scripts) into a digital DNA-like sequence and then synthesize the corresponding
DNA molecule. Synthesizing this molecule using digital or real human genomic fragments the-
oretically opens the possibility for privacy attacks, which have been demonstrated on a large
array of human genomic data. These privacy attacks aim at breaching the privacy of DNA sam-
ples, allowing an attacker to discover privacy-critical information from the partial or complete
DNA information of an individual. In the context of DNA computing, novel privacy attacks
will certainly emerge, and could consist in discovering a part of a particular script or video
that is privacy-critical. It is therefore important to consider whether privacy attacks and de-
fense mechanisms can be used when manipulating genomic data. At first, this chapter provides
the background about genomic data, and its modern generation and processing. Following, it
provides a survey on known genomic privacy attacks, and present the privacy-enhancing tech-
nologies that have been designed to protect genomic data. Later, this chapter also introduce
the current trust management methods one can rely on to further secure DNA storage and pro-
cessing methods, before discussing how DNA computing currently relates to those attacks and
privacy-preserving technologies. While concluding, this chapter presents some future research
avenues.
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2.1 Introduction

Human DNA is the genetic material contained in human cells that encode all the information
necessary for an organism’s functioning and reproduction. Therefore, understanding how DNA
modulates all those processes became a hot topic due to its potential contributions on fields
such as healthcare and forensics.

The DNA molecule is composed of four nucleotides, i.e., adenine (A), thymine (T), guanine
(G) and cytosine (C), that bind together to form a double helix. The two strands that compose
the double helix are anti-parallel, and, for each individual, contain genomic variations at cer-
tain positions in the genome. Genomic variations are alternative genomic subsequences where
individuals might differ. Such variations can be of different types, including single nucleotide
polymorphisms (SNPs) and copy number variations (CNVs). SNPs are genomic variation where
there is a single nucleotide difference, either because a nucleotide has been replaced by another
one, or because a nucleotide has been inserted or deleted. To be considered a SNP, a ge-
nomic variation needs to be present in 1% or more of the human population. SNPs are the
most studied genomic variations because of their low complexity. CNVs occur when a DNA
pattern is present in a variable number of copies in a genome region, either in increased or
reduced numbers. Genomic variations among and between individuals are interconnected by
complex statistical relations, such as linkage disequilibrium (LD) and kinship, which respec-
tively describe dependencies between different regions in the genome, and between genomes
from relatives. Linkage disequilibrium (LD) describes the non-random associations of several
genomic variations. When DNA is replicated during meosis to form another cell, or is trans-
mitted from parents to a child, two genomic variation positions that are in LD tend to be
simultaneously transmitted instead of independently from each other. Such internal relations
can be exploited when one of the genomic variation is known to infer the other. Kinship or kin
relationships describe hereditary connections and marriage ties between individuals, including
direct bonds (e.g., children, parents, grandparents) and collateral bonds (e.g., siblings, cousins,
aunts, uncles). Kin relationships result in genomic similarities between members of the same
family, because of the biological inheritance process that dictates the transmission of genetic
information from parents to their children.

The notions of genotypes and phenotypes are important to understand the genomic data
field, and are defined and correlated as follows. An individual’s genotype corresponds to its
set of genomic variations. The phenotype of an individual is the set of its observable physical
characteristics, such as its appearance (e.g., skin color/type, hair color/type, body silhouette),
development (e.g., blood cells, hormones production) and behavior. The phenotype is the result
of the expression of the information in the genotype in combination with the environment
interactions (i.e., epigenetics). Since the environment has a great impact on the phenotype,
even individuals with similar genotype, such as twins, can present different phenotypes.

The inclusion of genomic data in multiple scientific areas was promoted by the advances
of Next Generation Sequencing (NGS) technologies, which decreased the data generation cost
and, consequently, increased the availability of genomic data. The first step to reveal the DNA
information encoded by a sample is to sequence it using a NGS technology. NGS technologies
are machines that perform a chain of chemical reactions on a biological sample (e.g., a blood
sample) to translate it into its digital equivalent, in the form of a sequences of nucleotide called
reads. After sequencing, the information retrieved is treated in a processing pipeline to identify
its special features, i.e., its genomic variations.

Let us mention briefly introduce the main steps of this processing pipeline: read alignment
and variant calling. Read alignment is the first step required to determine the biological in-
formation contained on the reads produced by NGS technologies. In this step the reads are
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mapped to a reference genome to determine their original position in the genome. The refer-
ence genome is a synthetic genome sequence containing the most common genomic variations
in the global population. The human reference genome was assembled based on the genome
of several individuals from all around the world. Therefore, it represents a global synthetic
sequence and not a single individual’s genome. Variant calling is the step where the aligned
reads are compared to the reference genome to identify the positions at which they differ. In
this step, a quality score is used to distinguish from real genomic variations and sequencing
errors.

DNA data have been increasingly used in healthcare data processing pipelines, such as per-
sonalized medicine and disease predisposition testing, research, direct-to-consumer services and
forensics [1]. The high throughput of sequencing machines, which encourages huge DNA data
production, and the intensive computations required to process genomic data, often leads these
processing pipelines to be outsourced to cloud environments that provide powerful computa-
tional resources at an affordable cost. Cloud-based environments for biomedical data have been
described in [2, 3]. However, although public clouds provide powerful computational resources
at an affordable cost, they are managed by a third party, i.e., a cloud service provider. Using
public cloud therefore raises new challenges in order to keep genomic data secure. Furthermore,
the increasing availability of genomic data and its large array of potential applications encour-
aged data sharing to accelerate the understanding of DNA functioning, and allow the largest
number to benefit from the information it encodes. Due to the important expected applica-
tions of DNA data, and because of its greater availability, several genomic data repositories
were created to support and speed up knowledge acquisition and creation. Some examples of
those repositories include the 1000 Genomes (1000 GP), the dbGaP and the 100,000 Genomes
projects. The 1000 GP is a publicly available repository of human genomes, launched in 2008
with the goal of creating a resource on human genetic variations. dbGaP is an repository
containing genotype and phenotype data, which is an important collection for genome-wide
association studies (GWAS), and genome-diseases correlation studies. The 100 000 Genomes
Project is an England effort to provide a repository of cancer and rare diseases genomic data to
boost research in these fields. GWAS are a particular DNA study whose goal is to link observed
genomic variations with particular diseases. GWAS consists on a massive scan over multiple
individuals’ genomes to search for particular patterns that help to predict occurrences of a dis-
ease. Once those patterns are identified, they can be used to study the contribution of genes
to the disease, improve its diagnostic and treatment. Along with the increase of genomic data
processing, new requirements have emerged such as the needs for high performance and privacy.
The high performance demand pushed for the use of scalable and cost efficient environments,
such as public clouds, that provide powerful computational resources and large storage capacity.
However, as DNA data is directly linked to its owner identity, privacy breaches can occur when
data is not protected before it is sent to the cloud.

The emphasis put on genomic data security has been growing with the application of genomic
data in developing fields. Enforcing data security in an information system requires providing
both privacy and trust. Privacy challenges may arise when genomic data, which is sensitive
information, is stored and processed in a cloud environment, or shared. The privacy risks
that appear when outsourcing biomedical data to public clouds without adequate protections
are discussed in [4, 5]. Genomic data carry sensitive information such as predisposition to
genetic diseases, physical traits, and familial relations. As have seen described, members of a
family share genomic traits, and genome correlations. Humbert et al. [6] demonstrates that
the genomic privacy of a target individual decreases when genomic information from its family
members is shared. This work highlights the increasing of privacy risks, since human genomes
sequencing is constantly growing. In addition, the non-revocable nature of DNA makes any
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potential data leakage result in privacy loss that can never be attenuated. Therefore, such data
should be kept secret to prevent any harm to the owner, such as genetic discrimination, which
could result in denial of health insurance, education, and employment, or blackmail [7]. From a
security perspective, biological correlations between human genomes should also be considered
when designing DNA data processing algorithms, since they can be exploited by an adversary
to infer further information based on a partial genomic sequence and known statistics and/or
to relate family members. Therefore, it is important to protect family relationship information
to ideally prevent privacy attacks.

DNA computing is an emerging field that aims at using DNA to store information to perform
computations through chemical reactions. For this purpose, synthesized DNA, DNA molecules
composed in silico and then produced in laboratory. Since each molecule is synthesized to store
digital information, i.e., video, photo, code, its sequence is obtained by using a binary corre-
spondence for each nucleotide. For example, a basic encoding of nucleotides over 2 bits could
be: A =[0,0], T =[0,1], C = [1,0], and G = [1,1]. DNA computing promises the development
of massive parallel computing technologies, which would allow complex problems to be solved
in a short amount of time, instead of requiring weeks using conventional computers. These
promises rely on the fact that millions of DNA molecules can interact simultaneously. However,
this also increases the complexity of the output that a DNA computer would provide. Human
DNA and synthesized DNA (generated for DNA computing) share the same structure, however,
since they encode different information, they can have different properties. Yet, an interesting
practical application of DNA computing, in which the synthesized DNA has similar properties
as the DNA found in the human body, is the synthesis of DNA molecules to detect cancerous or
damaged cells with the goal of triggering the repairing response on them. This process allows
the prevention of the rapid multiplication of such cells and therefore slows the effects of the
resulting illnesses. This process has been described by Shapiro et al. [8].

In synthesized DNA, statistical correlations such as LD and kinship are not present since it
results from the translation of digital information (e.g., photo, video, code). Yet, other corre-
lations may exist. Considering the example of a programming script, knowing the nucleotide
patterns corresponding to a for or while loop could allow the inference of where and how many
times the code is computed, which for a privacy-sensitive script might be an issue. In addition,
if human-like DNA is synthesized one must be aware of the human DNA privacy breaches to
prevent possible information leakages. This chapter focuses on the security, privacy and trust
management aspect of human DNA. Overall, this chapter makes the following contributions.

1. First, this chapter describes the security and privacy challenges in the context of human
DNA and DNA computing, and put the emphasis on existing privacy attacks on genomic
data.

2. Second, it surveys the scientific community’s efforts to develop privacy-preserving tech-
niques for genomic data.

3. Third, it highlights how trust can be maintained while processing genomic data.

4. Finally, this chapter discusses the relations and impact of privacy-preserving techniques
and genomic data privacy attacks on DNA computing.

The remainder of this chapter is organized as follows. Section 2.2 provides an overview on the
existing security attacks on genomic data. Section 2.3 presents the community effort to develop
privacy-preserving solutions to prevent the reported security attacks. Section 2.4 describes
the important trust management aspects for the design of secure genomic data processing and
storage solutions. Section 2.5 discusses the previous sections, and the evolution of the scientific
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community best practices. Section 2.6 concludes this chapter and provides some insights for
future work.

2.2 Security attacks

Over the past decades, many privacy attacks on genomic data have been reported. These attacks
explored genomic data features obtained from a single individual, from a family, or from a target
group. These attacks alerted the research community of the need to develop privacy-preserving
genomic data processing and storage methods to benefit from cloud environments and keep
private information secret.

Security attacks are performed by an adversary to access or modify data to which authorized
access was not granted. This section describes security attacks on human DNA. When launch-
ing privacy attacks against human DNA, the adversary aims at discovering sensitive and not
released information about a target individual or group. Privacy attacks were reported since
2006 and further exploitation of non-protected genomic data was also described, with possibly
severe consequences to the data owner, in particular, possible insurance denial and employment
refusal [9, 10]. Due the demonstrated misuse of genomic data, researchers aimed at developing
privacy-preserving techniques to adequately protect genomic data and prevent future harm for
the data owners.
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Figure 2.1: Privacy attacks overview.

Figure 2.1 presents a summary of all the different reported attacks on Human DNA over
the years for all the attacks categories. The genomic privacy attacks described in the literature
can be classified into four categories, which are further discuss in this section:

1. Inference attacks

2. Re-identification attacks

3. Membership attacks

4. Recovery attacks

The main differences between the attack categories are the background knowledge (i.e., the
information) the adversary has initially access to, and the kind of information the adversary tries
to learn. Table 2.1 summarizes the adversary’s background knowledge and target information

5



for each category. The amount and quality of the background information directly impacts the
outcome information of the attack, and consequently its success.

Table 2.1: Security attacks: background and discovered information

Attack category Possible background info. Desired info.

Inference

- Partial or full DNA sequence

- Population statistics

- Hidden/non-observed genomic
variations

- Disease predisposition

Re-identification

- Partial or full DNA sequence

- Available medical data

- Population statistics

- Demographic information

- Familial relationships

- Phenotypic traits

- GWAS statistics

- Individual’s identity

Membership

- Partial or full DNA sequence

- Reference population statistics

- GWAS statistics

- Genotype frequencies

- Gene expression profiles

- Participation of an individual
in a group of interest

Recovery

- Partial or full DNA sequence of
relatives

- Familial relationships

- Genomic variation statistics

- Reconstruction of partial or
complete DNA sequence of
a target individual

At the end, this section also discusses system exploits, which may target information systems
that manipulate human DNA. Such exploits should be prevented so that privacy-preserving
methods remain robust to attacks.

2.2.1 Inference attacks

Inference attacks aim at discovering additional sensitive information based on a partial or full
genomic sequence. This kind of attack was also commonly used to infer the health status
of target individuals based on their genomic sequence and on background knowledge about
disease-related genes. The information retrieved from this kind of attack can be used by the
other attacks categories. The background knowledge used for these attacks is some genomic in-
formation about a target individual (e.g., SNPs information, whole or partial genomic sequence)
and population statistics such as allele frequencies or linkage disequilibrium.
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Gottlib [7] reported the use of genetic testing by US employers to infer the genetic disease
susceptibilities of employees who did not provide their consent. Performing these tests without
consent represents a privacy violation that can lead to employment discrimination. Nyholt et
al. [11] demonstrated that even after hiding a particular gene it might be possible to infer it from
its neighboring regions. Despite Professor Watson’s DNA sequence not containing information
about the APOE gene – one of the main genes known to be related to Alzheimer’s disease –
the authors were able to discover its value using the neighboring regions of the hidden gene.
This was made possible by the biological relations that link close regions in the Human DNA.
Wang et al. [12] proposed an inference attack using integer programming to infer hundreds
of SNPs based on known pair-wise correlations between SNPs in the human genome. In this
paper the authors also propose a membership attack that is discussed later in this chapter (see
Section 2.2.3). Gitschier [13] described a method to infer haplotypes from the Y chromosome
by exploring genealogical relations between men. The proposed method was used to infer sur-
names of individual from the Utah Residents (CEPH) with Northern and Western European
Ancestry (CEU) population present in the 1000 Genomes Project. Therefore, it may also enable
re-identification. Schadt et al. [14] performed an inference attack based on gene expression data,
which allows the prediction of the genomic sequence that leads to an observed expression data.
They then proposed the use of the predicted genomic sequence to perform a re-identification
attack and discover individuals in large populations. Humbert et al. [6] demonstrated how to
infer the genomic sequence of family members, related to an individual whose genomic sequence
is observed. This attack uses reproduction statistics and known relationships between genomic
variations in the human genome, and uses belief propagation, which in the context of genomic
data is used to compute unobserved genomic variations that have a correlation with observed
ones. Samani et al. [15] proposed an attack that takes advantage of publicly available high-order
correlations among single nucleotide variations existing in the human genome, in particular re-
combination rate and diploid genotypes, to discover hidden or non-disclosed genomic variations.
This attack has a higher inference power than previous work that considered only lower-order
correlations. Ayday et al. [16] inferred hidden or non-observed DNA information based on the
partial DNA sequence of a target individual or a DNA sequence from a member of his family
and publicly available phenotypic information. Berrang et al. [17] proposed a method that
uses Bayesian networks, which leverag the combination of different types of information, for
inference risk evaluation. The proposed method is used to perform inference of mother-child
relationships based on DNA methylation profiles and genomic information, which the authors
named a linking attack. He et al. [18] developed an inference attack based on publicly available
genomic information and personal traits revealed by target individuals or their relatives. The
attack allows an adversary to predict non-observed genotypes and traits.

Table 2.2 summarizes the techniques used to perform inference attacks, the key findings and
the possible harm caused to the genomic data owner.

2.2.2 Re-identification attacks

Re-identification attacks aim at associating a given DNA sequence with its owner. The back-
ground knowledge that is required for performing such an attack might include publicly avail-
able DNA statistics, the genomic sequence of target individuals or publicly available genomic
sequences, medical records with additional personal details (e.g., name, age, gender, geography),
and genealogical databases that contain familiar relationships.

Malin and Sweeney [19] developed CleanGene, a software that assesses the identification
risk associated to DNA sequences. This software performs re-identification based on available
health related data, i.e., from pharmacy records and hospital records, and disease knowledge
from publicly available repositories. Later, the same authors proposed REIDIT [20] an algo-
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Table 2.2: Inference attacks

Technique Key finding Harm

Genetic testing Genetic diseases suscepti-
bility

Employment denial

Statistics-based inference Hidden genomic regions in-
ference

Disease susceptibility dis-
closure

Integer programming Hidden genomic variations Genomic information and
disease susceptibility dis-
closure

Genealogy-based inference Genomic profiles inference Allow re-identification

Gene expression based infer-
ence

Genomic sequence infer-
ence

Allow re-identification and
membership attacks

Belief propagation with ge-
nomic statistics

Hidden genomic variations Genomic information and
disease susceptibility dis-
closure

Genomic correlations based
inference

Hidden genomic variations Genomic information and
disease susceptibility dis-
closure

Phenotype-based inference Hidden genomic variations Genomic information and
disease susceptibility dis-
closure

Bayesian networks Mother-child relations Familial relationships dis-
closure

Traits-based inference Hidden genomic variations Genomic information and
personal traits disclosure

rithm that performs data re-identification. The proposed algorithm uses deterministic methods
to link genomic data to named individuals, whose information is available in published records.
The authors define a trail attack as a variant of a re-identification attack where the identity
of a target individual is discovered using information that is collected from different indepen-
dent sources (e.g., from different studies in which the individual participated). In the end, the
adversary collects sufficient information to perform re-identification, even if the information of
each source alone is not sufficient. Li et al. [21] demonstrated that 75 statistically independent
SNPs are sufficient to unequivocally identify an individual. The study was based on common
random SNPs. However, if rare SNPs are observed the number of SNPs required for a suc-
cessful re-identification would be even lower. This work provided an important baseline for
further design of privacy-preserving approaches. Goodrich et al. [22] proposed the Mastermind
attack, which demonstrates that even after applying cryptographic techniques to protect ge-
nomic sequences’ privacy, it is still possible to learn some information at each guess attempt
which goal is to learn hidden information (e.g., genomic variations). Like in the mastermind
game, at each guess attempt, correctly guessed DNA positions are reported and if so, an ad-
versary already learns part of the sequence. This attack allows the discovery of the identity
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of a genomic sequence owner with a limited number of guess attempts. Sweeney [23] proposed
a re-identification method using demographic information applied to de-identified health data.
This attack demonstrates that based on few attributes (i.e., place, gender, and birth data),
which are combined with voter registration lists, it is possible to identify 53% of the American
population. The information used in this attack was easy to obtain, since the voter registration
lists was obtained for twenty dollars, and the health data was publicly or semi-publicly available.
Gymrek et al. [24] combined DNA information from the Y chromosome with publicly available
genealogical information, in particular surnames. Then, taking advantage of the father to son
surname heritage, the authors were able to de-anonymize 131 genomes from the 1000 Genomes
Project. However, since this attack is based on the Y chromosome, it only applies to male
individuals. Sweeney et al. [25] proposed an attack that links anonymized genomic data from
the Personal Genome Project to their owner’s name by combining publicly available records
(i.e., voting lists) and demographic information (i.e., birth date, postal code, gender). Humbert
et al. [26] performed a re-identification attack on anonymized publicly available genomic data
that takes advantage of genotype-phenotype relationships, either obtained from public reposi-
tories that report SNPs and phenotypic trait relations or computed from genotype-phenotype
databases. Wang et al. [27] demonstrated that it is possible to infer the identity of target
individuals from aggregate statistics, such as genome-wide association studies (GWAS) statis-
tics, even if they are differentially private, using Bayesian networks. Although the success of
identity inference attacks decreases when rigorous privacy protection is applied to the GWAS
statistics, the authors showed that the success probability of such attacks increases with the
background knowledge and that it is higher than that of random guesses. Lippert et al. [28]
proposed a method that allows re-identification of individuals based on the prediction of traits
applying phenotyping, and statistical modeling on whole-genome sequencing (WGS) data. The
authors relied on maximum entropy algorithm to use trait predictions for determining the ge-
nomic sample and phenotype profile that originated from the same individual. The authors
show that phenotypic prediction from WGS data can enable re-identification without further
data required. Zaaijer et al. [29] proposed a new method to perform re-identification of human
DNA samples in a fast and inexpensive way, called MinION sketching. They demonstrated that
analyzing 60-300 randomly selected SNPs and relying on Bayesian inference it is possible to link
anonymized genomic samples with their owners. Erlich et al. [30] proposed a re-identification
attack based on long range familial searches. The proposed attack was performed on a dataset
with 1.28 million individuals collected from direct-to-consumer services, such as 23andMe and
Ancestry. Considering US individuals with a European ancestry, which represented 85% of the
individuals from the dataset, it was possible to reach a third cousin or closer relationship in
60% of the searches. After finding a relative in a long range-familial search, the authors demon-
strated that it is possible to perform re-identification using common demographic identifiers
(e.g., age, gender, geography).

Table 2.3 summarizes the main information used for re-identification attacks and the key
findings. In this kind of attacks the goal and harm caused is always identity disclosure by
linking de-identified genomic data with the owner’s identity, independently of the information
and method used.

2.2.3 Membership attacks

Membership attacks focus on inferring the participation of a given individual in a study group.
The attacks in this category compare the statistics of the target DNA statistics with the statistics
of the target group and of a reference population. With this method, the closer the statistics
of an individual are to a certain group, the higher is the probability that she belongs to that
group.
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Table 2.3: Re-identification attacks

Information Key finding

Pharmacy, hospital records and diseases in-
formation

CleanGene software for re-identification risk
assessment of DNA sequences.

Public genetic and nominative information
from different sources

REIDIT software performs re-identification;
Definition of trails attacks.

Common SNPs information 75 independent SNPs allow unequivocally
identification of individuals.

Demographic and de-identified health infor-
mation

The identity of 53% of the American popula-
tion was disclosed.

Y chromosome and genealogical information Surnames disclosure for 131 genomes from
the 1000 GP.

Genotype-phenotype information Physical traits based re-identification.

Aggregated statistics Bayesian networks allow re-identification of a
target individual participating in a GWAS.

Whole-genome sequencing (WGS) data and
physical traits

Phenotypic prediction fromWGS data allows
re-identification without requiring further in-
formation.

Familial relations and demographic informa-
tion

Familial relations allow the discover of close
relatives and, then, demographic identifiers
allow re-identification.

Homer et al. [31] were the first to propose a membership attack that inferred the participation
of an individual in a given study group. Using genomic variations expression or allele frequency
information, the authors propose some statistics that compare the value obtained for a target
individual’s DNA sequence with the ones obtained for a reference population and for a particular
study group. Then, one can conclude that the target individual belongs to the study group, if
its statistic are closer to the value of the study group. Interestingly, this attack showed that
studying 50,000 independent SNPs is sufficient to infer the participation of an individual in a
group of 100 people, or 10,000 SNPs if the group is composed of 10 people. Wang et al. [12]
proposed an extension of the Homer’s attack by adding into consideration existing statistical
correlations among SNPs on the DNA, i.e., linkage disequilibrium. Such correlations allow the
inference of further non-observed SNPs that when included in the attacker knowledge empower
the attack statistics. This work shows that the optimized attack is able to determine the
participation of some individuals in a particular genome-wide association study (GWAS) even
using a low quality reference population. In addition, the attack used a couple hundred SNPs,
which represent around 30× less SNPs than in Homer’s attack to achieve the same attack
power. Braun et al. [32] proposed the use of empirical tests to assess the participation of a
target individual in a study group. The empirical test is performed using the target individual
genotype information and the marginal allele frequencies of the group one is studying. Jacobs
et al. [33] demonstrated how likelihood-based statistics can be used to infer the participation of
a target individual or his close relatives in a GWAS. The statistics are computed using genotype
frequencies and individual genotypes. In addition, this paper evaluates the membership attack

10



power for different sample size and considering different sets of SNPs for computing the statistics.
Sankararaman et al. [34] developed the SecureGneome tool, which enables the detection of
a target individual on a study group based on the summary statistics from a GWAS. The
membership attack compares the target individual alleles profile with the allele frequencies
of the study group and the allele frequencies of a reference population, similarly to Homer’s
attack [31]. Clayton et al. [35] designed a membership attack using a Bayesian approach. This
attack considers prior probability knowledge about the participation of an individual in a certain
sample. Shringarpure and Bustamante [36] demonstrated an attack on the Beacons Project.
This project designed a platform for secure querying of genomic information where only boolean
answers are returned to the user, with the purpose of limiting the amount of private information
disclosed. Although the information obtained per query is limited, the proposed attack shows
that by querying 250 genomic variations and combining their results, it is still possible to discover
the participation of an individual in a beacon with 64 European individuals. Re-identification
was also deemed possible, however, it required a much higher number of queries (1000 genomic
variation queries). This attack showed that beacons are susceptible to membership attacks
and may also leak phenotypic information about the participants they study. Cai et al. [37]
proposed an attack that takes as input a dataset and the GWAS statistics from 25 randomly
selected genomic variation sites to infer whether an individual participated in the case group.
More precisely, this attack requires the genotype of a target individual and compares it with
the genotypes inferred from the case group using the GWAS statistics, and if a match is found,
the target individual is considered to have participated in the case group. From then on, it
is also possible to perform re-identification of case individuals. Backes et al. [38] proved that
genomic data is not the only type of omics data that can be used to perform membership
attacks. They used expression data, in particular from microRNA and showed how to infer the
participation of a target individual in a particular group. Since microRNA data is more affected
by the health status than genomic data, it is therefore more informative about the group the
individual belongs to, be it the control or the case group. Thenen et al. [39] improved the
membership attacks proposed by Shringarpure and Bustamante. With only 5 queries (50× less
queries than the ones required by the former attack), they were able to infer the participation
of individuals in a beacon with 95% of confidence, using the same beacon configuration used in
previous works. The attack improvements are due to the use of high-order Markov chains to
infer high order relations on the genomic data. Another important finding of this work is that
current privacy protection measures, which include particular genomic regions hiding and the
implementation of a query budget, are not efficient against the proposed membership attacks.

Table 2.4 summarizes the information used in the membership attacks, and their key find-
ings. All the attacks in this category require some genomic information of the target individ-
ual(s).

2.2.4 Recovery attacks

Recovery attacks focus on inferring the DNA sequence of a target individual aided by publicly
available DNA statistics, such as allele frequency in the reference population, and/or kin rela-
tions if the genomic sequences of relatives are available. The inferred DNA sequence can then
be used to perform attacks from the previous categories, which assume the availability of the
DNA sequence of a target individual.

Kong et al. [40] exploited kin relationships to infer haplotypes of target individuals based on
observable genomic information of their relatives. The proposed inference method incorporates
information about recurrent mutations transmitted from parents to their children and fine-scale
recombinations. Wang et al. [12] also performed recovery of non-observed sequences, overall
100 sequences containing a total of 174 SNPs were recovered, based on single and pair-wise
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Table 2.4: Membership attacks

Information Key finding

Genomic variations expression data or statis-
tics

50,000 SNPs are sufficient to disclose mem-
bership in a group of 100 people and 10,000
SNPs for a 10 people group.

Genomic variations expression data or statis-
tics and statistical correlations

Including statistical correlation in the
genome requires 30× less SNPs to achieve
the same attack power.

Allele frequencies of the study group Empirical tests allow membership disclosure.

GWAS statistics Using likelihood-based statistics is possible to
infer the membership of a target individual
and close relatives.

Target group statistics Bayesian methods allow membership disclo-
sure.

Genomic variations queries For a beacon with 64 European individuals
250 queries allow membership disclosure.

Genomic variations queries and high-order
Markov chains

Markov chains improve the membership in-
ference power, allow 50× less queries for the
same result of similar attacks.

Expression data Expression data is highly connected to the
health status, allowing the membership dis-
closure in disease-related studies.

allele frequencies. Those recovered sequences were then used in the proposed inference and
membership attacks. Fredrikson et al. [41] showed that personalized medicine models can
leak information about an individual’s DNA sequence. By combining the information from
a pharmacogenetic model, which was used to design particular medicines for a patient, and
demographic information from the same patient, the authors proved that is possible to discover
some hidden regions of the DNA sequence of a patient. Deznabi et al. [42] described how to
discover parts of the genomic sequence of a target individual based on familial relations, public
phenotype information and other available data from online repositories (e.g., social networks).
Akgün [43] proposed an active recovery attack which allows the adversary to discover genomic
data from an individual using SNP statistics. This attack consists on the manipulation of the
weights attributed to the SNPs used in a test, so that it is easier to infer the SNPs of a target
individual from the test results. This attack was one of the few assuming a dishonest party.
Edge and Coop [44] proved that using publicly available genomic data an adversary is able to
learn the genomic sequence of a target individual using identical-by-state (IBS) tiling. This
technique consists in matching known genomic sequences against an unknown one to obtain
information about it. The authors showed that applying IBS tiling for 900 genomes from the
1000 Genomes Project reveals at least one allele from 82% of the SNP sites of an individual
with European ancestry. In addition, the authors proposed a variant of IBS tiling, called IBS
probing, that allows the adversary to learn if the target individual’ genome contains a specific
disease-related allele, whose neighboring sequence is known. A related attack was described by
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Ney et al. [45]. In this attack, the authors demonstrated that an adversary could almost learn
the entire genomic sequence of a target individual from GEDmatch – a U.S. direct-to-consumer
online service that compares DNA data files. Two possible ways are described to learn the
individual’s genomic sequence: (i) by uploading artificial nearly-all-heterozygote genome and
examining the resulting IBS segments (similar to [44]), and (ii) by uploading a all-heterozygote
genome and examining the resulting images.

Table 2.5 summarizes the information used on recovery attacks and the respective key find-
ings.

Table 2.5: Recovery attacks

Information Key finding

Kin relationships and relatives partial ge-
nomic data

Inference of a target individual sequence.

Pharmacogenetic models and demographic
information

Target individual genomic sequence recon-
struction combining the information leaked
from the model and demographic informa-
tion.

Known and unknown genomic sequences Using identical-by-state tiling allows multiple
SNPs inference that allow genomic sequence
reconstruction.

2.2.5 System exploits

System exploits can affect all information systems, and are therefore not specific to genomic
data processing systems. They explore system vulnerabilities and they must be taken into
account when designing privacy-preserving systems in order to ensure their long term security.
System exploits and intrusions can lead to user’s data exposure and consequently to information
leakage. In order to be secure, systems must ensure confidentiality, integrity and authentication.
Confidentiality focuses on preventing unauthorized access to the data. Integrity ensures that
the data is not modified by unauthorized users and is also in charge of reporting those changes
in case they happen. Last but not the least, authentication is the property that allows the
verification of users’ identity and then, grant or deny them access to the system.

Malicious attacks are also part of system exploits that can lead to privacy breaches and data
theft. A successful attack can result in data loss if backup data copies are not maintained.

Finally, in the context of DNA data, maintaining secure systems is of paramount importance,
due to the previously discussed sensitive information encoded in the DNA and the reported
privacy breaches. There are two main scenarios for genomic data systems: (i) the data is stored
locally or in a private server, or (ii) the data is stored in a public cloud, e.g., because of its large
size.

In the first scenario, the system designer is responsible for placing protection methods to
prevent system exploits. To strengthen the protection, protection techniques can be also applied
at the data level, for example, data obfuscation and data encryption. While, for the second
scenario, the system protection is of the responsibility of the cloud service provider. Therefore,
the user should protect his data before sending it to the public cloud. Commonly, this process
is made through data encryption since it prevents the cloud or any other entity that obtains an
access to the data to learn its real value.
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2.3 Privacy-preserving techniques

Traditional privacy-preserving techniques need to be adapted to be used on genomic data,
since, as discussed previously, genomic data itself contains re-identifiable information. Sev-
eral approaches were proposed to perform some computations on genomic data in a privacy-
preserving way, such as in genome-wide association studies (GWAS) statistics computation,
DNA sequences alignment, and genomic database queries. GWAS consist in the analysis of sev-
eral genomes over multiple genomic variation positions to find the relation between genotypes
and diseases. Such solutions use different techniques, such as data obfuscation, cryptography,
and trusted hardware. DNA computing itself is a paradigm that can be used to design novel
privacy-preserving techniques, however, this field is in its infancy. Briefly, work on this field
described DNA cryptography, which is described later in this section.

As the previous section detailed, several privacy attacks on genomic data have been described
in the literature. Following these findings, the potential impact of privacy attacks on data
owners made the research community focus its effort on the development of methods to prevent
successful attacks. These methods can be categorized as follows:

1. De-identification methods

2. Data augmentation methods

3. Cryptography-based approaches

4. Secure multi-party computations

2.3.1 De-identification methods

De-identification consists in removing all the personal identifiers from the data in order to
keep secret the identity of the data owner. The main goal of de-identification is to prevent
the direct association of genomic data with their owners, and consequently, protect the owners
identity. In other words, de-identification aims at providing data anonymity. This is a technique
widely implemented for biomedical data. However, as demonstrated by re-identification attacks,
applied alone this method is often not enough to protect the data owner. Indeed, these methods
are particularly inefficient in protecting genomic data since they do not remove the identifying
information contained in the genomic data itself (i.e., rare genomic variations). In addition,
providing anonymity has become more difficult with greater availability of information in online
platforms, which can be related with genomic data and contribute to individuals’ identification.

K-anonymity is a widely applied paradigm to enforce a stronger data de-identification, which
consist in modulating the data attributes in such a way that based on those attributes an
adversary is not able to distinguish an individual from k-1 other individuals [46, 47]. The two
methods mainly used to achieve k-anonymity are suppression and generalization. Suppression
consists in removing the attributes that can lead to direct identification of an individual, such
as those that are not shared with other individuals in the dataset and are not generalizable.
Generalization consists in translating an attribute value in a broader class. For example, it
is common to replace a numerical value by an interval that contains it. Emam et al. [48]
developed a de-identification algorithm that ensures k-anonymity on health datasets. Other
commonly used methods to achieve anonymity are l-diversity and t-closeness. l-diversity [49]
was proposed as an improvement of k-anonymity that preserves privacy when the diversity in
the attribute values is low, and assumes that the adversary has access to background knowledge.
t-closeness [50] is a refinement of l-diversity where the difference between the distribution of
the sensitive attributes for a given class and the distribution of the same attributes in the full
table is at most t. Although this method improves privacy, it also implies some utility loss at
the data management and data mining levels.
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DNA lattice anonymization (DNALA) [51] was proposed to anonymize pairs of genomic
sequences, which are represented by the sequence that represents the minimal distance to both.
This is a generalization process that resembles k-anonymity. The proposed method was tested
on human genomic sequences publicly available. The main limitations of the proposed gener-
alization are the following: i) it is dependent of the pair of sequences considered; and ii) it is
limited to two sequences.

Lin et al. [52] proposed a generalization method based on data binning. The proposed
approach ensures that no unique record is present in the database released to the users. The
bin size works as an anonymity level indicator, since a larger bin size makes data less specific
and detailed, and consequently, provides a higher level of anonymity.

In conclusion, although de-identification methods were reported to be insufficient to prevent
re-identification [53, 54, 36], they do complicate them. It is also important to consider that
anonymity in the context of genomic data is different from other data types, since genomic data
contains personal identifiable information itself. Furthermore, its combination with other meta-
data, such as name, gender, age, and geographic details, power the privacy attacks described in
the previous section. DNA computing, as an emerging paradigm, could also contribute for the
development of de-identification methods, allowing the data to be de-identified as soon as it is
produced by the sequencing machines. This could be done, for example, by removing the need
of metadata, such as identifiers, by also encoding them in a DNA sequence format.

2.3.2 Data augmentation methods

Data augmentation consists in applying generalization or obfuscation in order to protect data.
In the context of genomic data, it consists in making the data of different individuals indis-
tinguishable by generalizing or obfuscating the information it contains, so as to prevent their
unequivocal identification.

Generalization, at the genomic sequence level, consists in the representation of two or more
sequences with the most common sequence among them. In other words, a set of genomic reads
are represented by the most common genomic variations they contain [51, 55].

Data masking consists in hiding sections of the data in order to make them unobservable and
unpredictable for an adversary. The data that is masked correspond to the sensitive information
one wants to protect from unauthorized access. Cogo et al. [56] proposed the first automated
sensitive DNA short sequences detection, which relies on Bloom filters. This approach improves
privacy protection by allowing the user to store and process the sensitive and insensitive DNA
sequences differently. Later, Decouchant et al. [57] proposed an automated sensitive information
detection for long DNA sequences. This approach allows the efficient privacy-preserving pro-
cessing of DNA sequences with a lower performance overhead and higher precision than Cogo’s
approach.

Differential privacy is another data augmentation technique, which is used to make an
aggregate result indistinguishable whether a single individual participates or not in that result
through the addition of noise [58, 1, 59]. With differential privacy, the greater the noise added,
the higher the privacy protection is. However, the addition of noise reduces the data utility.
Consequently, applying this technique requires studying the trade-off between data utility and
privacy protection to ensure that subsequent data analysis will not be compromised.

The techniques in this category make re-identification attacks harder to perform, since their
main purpose is to hide sensitive information or genomic regions, possibly by adding noise.
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2.3.3 Cryptography-based approaches

Cryptography-based approaches are characterized by the protection of the input and output
using an encryption scheme. These approaches can be mainly used for two purposes: storage or
processing. They differ by the encryption schemes used since the processing scenario requires
operations to be allowed on the encrypted data. Cryptography-based approaches are interesting
because of their guaranteed privacy-protection, however, their application is limited due to their
longer computational time. Garbled circuits [60] allow two parties to perform secure computa-
tions. For example, a user can send his encrypted data to a server where some computations
are performed and, then, the encrypted results is sent back to the user. Garbled circuits protect
the input and intermediate results, which are never revealed, since they are always manipulated
encrypted on the server side.

Homomorphic encryption is a particular subject of cryptography which allows mathematical
operations on the encrypted data. This allows some computations to be outsourced to untrusted
environments, such as public clouds, without having to decrypt the data. Atallah et al. [61]
designed a privacy-preserving strings comparison algorithm using homomorphic encryption,
which computes the edit distance between two DNA sequences. Kantarcioglu et al. [62] proposed
a cryptography-based approach that allows genomic sequences sharing and querying.

Despite the performance limitations of cryptography-based approaches, there are still some
applications where encryption can be practical, such as determining disease susceptibility through
genetic testing [63], and secure datasets querying [64]. He et al. [65] proposed a cryptography-
based approach to identify relatives. In this approach a pair of individuals only share the
necessary encrypted genomic information to determine if they are relatives or not. The results
obtained showed that this approach is able to find relationships up to third cousins level while
preserving the privacy of the individuals.

Cryptography-based approaches provides a high level of protection, however, current en-
cryption schemes are not designed to protect genomic data for its full lifetime [6]. This is a
real challenge since an individual’s genome is partially inherited from previous generations and
transmitted to the future ones.

In the context of DNA computing, DNA cryptography is emerging. This technology uses
DNA algorithms that convert the information to be protected into DNA, first converted to the
digital DNA sequence and then to the DNA molecule. This process is equivalent to the opera-
tions performed by standard cryptographic schemes, where plaintext information is converted
into encrypted data. In this field two types of DNA cryptography methods exist: DNA-based
data hiding schemes and DNA-based encryption schemes. DNA-based data hiding schemes
consist in converting the message to DNA nucleotides and then mix the real message DNA with
fake DNA sequences and send the mix to a receiver. DNA-based data hiding schemes consist in
encoding the information in DNA nucleotides instead of using binary form. Then, the double
helix is created following the complementarity property to increase the complexity [66, 67].

2.3.4 Secure multi-party computations

Secure multi-party computations (SMC) allow the secure collaboration of several institutions,
e.g., hospitals, biocenters, researcher centers and universities. SMC enable computations over
a dataset that is distributed among the participating institutions while keeping the data pri-
vate [68]. This technique allows third parties to perform computations on encrypted data,
without learning any information about the data, the computed results, or the contribution
of any party participating in the computation. Therefore, SMC does not require to trust a
third party. In addition, since data is transferred encrypted, data usability is not compromised
while providing privacy protection. On the other hand, the computational overhead and com-
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munication costs between participants are high, which may make SMC not practical for some
applications. SMC can use standard cryptographic algorithms, such as AES, which provide
strong privacy and confidentiality properties. Some examples of SMC based approaches include
the work described in [69, 70, 71]. Aziz et al. [69] proposed a SMC based approach that used
the Paillier encryption scheme to enable queries on genomic data. The results were obtained
considering five geo-distributed parties and show that this method requires a computational
time comprised between 7 minutes and 4 hours. Cho et al. [70] proposed secure GWAS analysis
through SMC. Another closely related contribution is METIS [71], which uses secure multi-party
computations to make the clients, the server, and data owners cooperate to enable computations
on genomic data provided by the data owner without disclosing it to the other parties. This
approach intents to give the genomic data owner the full control regarding his/her genomic data
analysis permissions. At the same time, the data owner has no computations overhead.

2.4 Trust Management

Trust management considers other possible sources of exploits that can compromise the ge-
nomic data privacy. The data producer, the users, and the storage service providers play an
important role on the genomic data cycle. Privacy protection for genomic data must consider
the vulnerabilities to potential attacks on the data producer side, on the user side, and on the
storage provider. This topics are discussed in the following sections.

2.4.1 Genomic data ownership

An important question regarding human DNA privacy and trust management is to determine
to whom the sequenced genomic data belong to, and who should keep it. For several researchers
the sequenced genomic data belong to its donor and he/she should own the full rights regarding
that data. However, nowadays, DNA sequencing and processing involves different institutions
(i.e., sequencing center, biocenter, hospital) which make ownership complex with several entities
requesting and having access to the DNA sequence. As discussed in the next section, the
data provider is a commonly trusted entity, whose main role is to produce the DNA sequence.
However, assuming that the DNA sequence should be kept only by its donor, the traditional
processing pipeline needs to be modified so that the data provider or any other entity involved
in the data processing is not able to keep a copy of the data.

In the processing phase, genomic data owner should be able to define for which applications
he/she allows the data to be used, in other words, the data owner must define the data access
and usage policies. There are two main kinds of data use, primary and secondary. The primary
use of the data grants the permission to use the data for a particular application (e.g., research,
GWAS, genetic testing), which is often the original reason behind its collection. The secondary
use allows the data to be used for other applications than the initial use case. In both cases, the
data is controlled by the service provider. Therefore, the data owner needs to define the access
and usage policies before the access to the data is granted. Furthermore, at any moment the
data owner must be able to update the consent accordingly to his/her preferences, which should
be immediately implemented. Although, the data owner might allow the use of his/her data
and later change it, once the data usage has been granted for some application, it is impossible
to ensure that the involved entities destroy their data copy.

2.4.2 Trusting the data provider

One way to get a genome sequenced is to participate in genetic studies by donating a biological
sample, which is handled by the data provider. The data provider, commonly biocenters with
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sequencing facilities, is the entity responsible to generate the data. The data providers for
human sequencing data is the sequencing center. In the DNA computing context, the data
provider is the laboratory where the DNA sample is synthesized.

Other widely known data providers are direct-to-consumer sequencing services, such as
23andMe, Helix, MyHeritage and Ancestry, that provide genome sequencing service and allow
the user to explore its own genomic information as a recreational process. The cost of those
services have been dropping in the last decade (23andMe: from $99; MyHeritage: 79AC) and
their use has increased. However, when using such a service the user must inform himself
about the policies of data ownership. It must be clarified by the service provider if the spare
biological sample is discarded and whether the genomic data is completely deleted upon request.
Nevertheless, most of these direct-to-consumer sequencing services store the genomic data in
servers they rent from public clouds, where it can be accessed by the user. Therefore, the user
must also get informed about the data protection policies while choosing a service provider.

One other point of discussion is whether or not the data provider should keep a copy of the
data. From the privacy point of view, it would open a window of vulnerability if a copy is kept,
since the data is owned and managed by another entity. On the other hand, having a copy of
the data allows better availability and reduces the risk of data loss. This decision must take
into account the specific data storage and sharing policies of each data provider.

2.4.3 Access control

Access control consists in regulating who has access to the data following stipulated access
policies and agreements. In addition, access control is also in charge of ensuring the traceability
of the access to a particular file or data. In other words, it can be described as registering all
the accesses made to the data, which in case of data modification or corruption would allow
the identification of its author [59, 72]. Although this technique alone is not privacy-preserving,
since it does not itself provide data protection, it is widely used in combination with other
techniques.

Several genomic sequence repositories require a data access request that is evaluated by a
specialized committee. Although this process is essential to protect the data from being misused,
it can take several months until it concludes. This process can even be longer in the case of
collaborative repositories since all the involved institutions need to approve the access. Another
limitation of this methodology is that the access to the data is commonly granted for a short
period of time, and in case the access period needs to be extended, the decision process needs to
be repeated [73]. This process can sometimes limit accessibility to the datasets in exchange for
more control over data accesses and, consequently, reduce the possibility of privacy breaches.

Erlich et al. [74] described an alternative to the classic access control, bilateral consent
framework (BCF), to facilitate genomic data sharing while protecting data privacy. In the
BCF, the participants can directly decide who can access their data instead of requiring a
decision from the access control committee. This streamlines the process of obtaining access to
data and also to apply changes on the access rights. However, although such a model seems
to be promising, the privacy sensitive nature of genomic data makes many institutions keep
utilizing more classic access control schemes. This demonstrates that dynamic access control
solutions require further development.

Blockchain is an emerging technology that allows the collaboration between multiple parties
removing the need of an intermediary trusted centralized party to authenticate the interactions.
In the context of healthcare, blockchain applications have been increasing, with particular in-
terest for patients identity’s validation, to facilitate the management of permissions, and for
access control to biomedical data [75, 76].

18



In the DNA computing field, Namasudra proposed a secure and fast access control model
to address the system overhead and the long accessing time required when searching for data
stored in the cloud [77]. This scheme keeps a fast data access list on the cloud side, and uses a
1024-bit DNA computing based key for data encryption, which increases data security.

2.4.4 Cloud environment: storage and processing

Genomic data processing requires extensive resources due to the huge amount of data to be
analysed and the intensive computational processing. Therefore, this processing is often out-
sourced to public clouds, which provide performance improvement and larger storage memory.
However, clouds are managed by a cloud service provider (CSP) that provides limited control to
the user over its own data. Furthermore, the data can be manipulated (i.e., copied, transferred)
by the CSP without users awareness and stored in multiple locations for data availability. These
properties make the data more prone to possible unauthorized access by the CSP or an intruder
when it is stored in a public cloud [78]. In order to prevent the unauthorized access to genomic
data on clouds, the user can apply some protective techniques and must agree with the CSP on
the conditions to handle the data [79].

In particular for genomic data, it is also important to know the data properties to limit the
potential information leakage in case the data outsourced to the cloud might suffer some privacy
breach. In [80] the authors define some data aggregation properties, in particular the ratio
between number of genomes and number of genomic variations that users should follow when
releasing genomic data to prevent information leakage. Cryptography-based schemes have been
proposed to allow the outsourcing of intensive computations, such as sequence comparison, to
public clouds while protecting data privacy [81]. Chen et al. [82] proposed a privacy-preserving
reads alignment approach that combines processing on public and private clouds. The main
concept of this approach is to assign hash values to sensitive information and, then, process
the hashes in a public cloud. Further processing on the sensitive information is performed
in the private cloud. Although this process outsources part of the computations, significant
computations are sill run in the private cloud. Balaur [83] performs alignment on hybrid clouds
based on MinHash and k-mer voting. This approach was developed to allow the user to transfer
part of the processing to the public cloud while guaranteeing privacy protection and ensuring
high accuracy. The candidate positions step uses privacy sensitive information, i.e., the genomic
sequence and the reference genome in plaintext, and is performed in the trusted environment
(private cloud), while the secure voting that selects the best position a read aligns to is performed
using hash values in the public cloud. DepSky [84] focused on providing secure storage in a cloud-
of-clouds relying on encryption, encoding and data replication. Charon [85] was designed to
provide secure storing and sharing of genomic data on cloud-of-cloud systems. GenoShare [86]
is a tool that was developed to support conscious genomic data sharing. This tool takes as
input the genomic information to be shared, the adversary’s background knowledge and other
publicly available information, for example, previous data releases. It then simulates three
privacy attacks (membership, phenotype inference, and kinship inference) to determine which
data can safely be shared and which data should not be shared. More recently, Cogo et al. [87]
proposed a privacy-preserving efficient and dependable cloud-based storage approach for human
genomes. This approach combines sensitive information detection and deduplication. The
sensitive information detection method is applied to human genomic reads for privacy protection
improvement, while the deduplication method allows the optimization of the storage space. This
work represents an important effort towards privacy-preserving outsourcing of genomic data to
the cloud environment.

Trusted execution environments (TEEs) are secure and isolated memory and code partitions
located on a processor, which are not accessible to the remaining system. They were developed to
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provide data confidentiality while ensuring the integrity of the code they execute. Consequently,
if communications with the TEEs are secured, the data and intermediary results are protected.
Some examples of TEEs include ARM trustZone and Intel SGX. However, some side channel and
cache attacks were reported and showed vulnerabilities of TEEs. In reaction, mitigation methods
have also been proposed [88, 89]. Some secure genomic data processing algorithms have been
developed using TEEs, including secure genetic testing and privacy-preserving decentralized
processing of genomic data [90, 91]. However, to assume that the processing done inside a TEE
is secure, it requires to trust the processor manufacturer, e.g., Intel for the SGX technology.

Privacy risks associated to the processing of biomedical data in cloud environments were
studied in [92]. This study highlights the main benefits of cloud computing as the following: (i)
vast resources availability, which is useful for parallelization; (ii) affordable cost; and (iii) the
user is free from the maintenance duties. However, important security challenges also appear
when outsourcing sensitive information to the cloud, which include: (i) control, management
and security of the data is the user responsibility and the cloud service provider, therefore
they should agree on the policies; (ii) access rights need to be well defined and updated, since
cloud environments can be accessed remotely; (iii) the user must prevent data loss by holding
a backup copy, since cloud environments are shared resources and are susceptible to failures, as
all computational systems.

2.5 Discussion

Genomic data presents a wide range of applications, which boosted its production and availabil-
ity, creating massive amounts of genomic data to be processed. This led the research community
to develop high-throughput algorithms and search how to leverage more efficient environments
for genomic data processing, such as public clouds. However, several privacy attacks on genomic
data have been reported in the literature, demonstrating that data was not being protected
adequately. Such privacy attacks are classified into four main classes: inference attacks, re-
identification attacks, membership attacks, and recovery attacks. The main difference between
the different types of attacks is the information the adversary intents to discover, ranging from
obtaining additional genomic information about a target individual to discovering the data
owner identity. This applies to human DNA data, which is characterized by natural correla-
tions that occur between regions in the genome and between the genomes of members of the
same family. Privacy attacks on human DNA use those correlations to improve the power of
the attack. For synthesized DNA such correlations exist if it was created based on the human
genome. If it is created independently, the properties can be different, however, since they
share the same format, similar attacks might be devised to disclose information contained in
synthesized DNA. The potential harm caused by privacy attacks alerted the researchers about
the urgent need for efficient privacy-preserving approaches for storing, sharing and analyzing it.
Although several privacy-preserving approaches were proposed in the last decades, the field is
still at an early development stage and reaching a good balance between privacy and utility is
still a challenge in many applications. The main difficulty to address is that privacy-preserving
techniques commonly used are not sufficient for genomic sequences since they contain personal
and identifiable information themselves.

Privacy-preserving techniques applied to genomic data include de-identification methods,
data augmentation methods, cryptography-based approaches, and secure multi-party computa-
tions. In the de-identification methods, anonymization techniques are widely used for genomic
data, however, they have been shown to be insufficient to prevent re-identification attacks [24].
For genomic data, anonymization is not sufficient since the data itself contains personal identi-
fiable information. Nonetheless, those techniques are still applied to genomic data jointly with
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other protection methods, since they make the identity inference task harder. Data augmen-
tation methods are more efficient than anonymization since they aim at hiding or generalizing
properties that are inherent to genomic data. Data masking and differential privacy are com-
monly applied methods. Such methods target the prevention of re-identification attacks, even
though they might not completely prevent them. A drawback data augmentation methods is
reaching an acceptable trade-off between privacy and utility loss. In particular for differential
privacy, in order to achieve good privacy protection, considerable noise is added to the data,
however, its utility might become compromised. Cryptography-based approaches provide the
highest protection to genomic data and they are very efficient against all kinds of privacy attacks,
since any data or metadata is not revealed to any unauthorized party. However, the required
computational resources and time are not negligible and even unpractical for some processing
tasks. Cryptography-based approaches are efficient to prevent all the described privacy attacks
if the data is only handled in plaintext in trusted environment and by the authorized users.
Secure multi-party computations (SMC) are often applied to allow collaboration between dif-
ferent entities, e.g., biocenters, that want to perform computations over all data parties without
revealing each entity data share. Regarding privacy protection, SMC is efficient since data is
only transmitted encrypted and the computations are only decrypted by the legit users, which
have the decryption key.

Giving a practical example, to prevent recovery attacks as described in [44, 45] that apply
identical-by-state (IBS) tilling and combine publicly available genomic data and genealogical
databases, two mitigation approaches could be implemented. First, often the IBS tiling reveals
the location of the queried segments, which contribute to the inference of the target individual’s
genome. Therefore, hiding this information from the results would complicate the sequence
inference since the adversary would only learn if the segment is present or not in the genome.
Second, for the case of the use of artificial or manipulated genomic sequences, the prohibition of
such sequences would prevent the techniques applied in [45]. However, authentication techniques
for genomic sequences are still an open challenge.

For synthesized DNA, natural correlations occurring in the human DNA are not considered,
which introduces some independence between synthesized DNA sequences. Thus, techniques
such as data augmentation and cryptography-based techniques can be applied and might pro-
vide improved protection to synthesized DNA. To determine the information encoded on the
synthetic DNA molecules, traditional sequencing technologies that have been designed for hu-
man DNA sequencing can be used. This process eventually returns the plaintext sequence of
nucleotides corresponding to the synthetic DNA information, which in turn reveals information
about the original data that was used to create it. Therefore, the sequenced data must be stored
securely to prevent information leakage.

The described privacy-preserving techniques are yet insufficient to address the performance
and utility that would fully take advantage of genomic data processing while ensuring the
adequate privacy protection. Interoperability among genomic data from different institutions
potentially geo-distributed is still not fully addressed. In addition, in this scenario standardiza-
tion and common laws are required to replace the existing per country genomic data privacy
guidelines.

In the context of genomic data, trust management need to consider several points. First,
the data owner must have the right to manage the data, including data access and processing.
However, there are open discussions regarding who should keep the data, with the following
possible scenarios: (i) only the data owner has a copy of the data; (ii) the data provider has
a copy of the data; (iii) the entities involved in the processing have a copy of the data. In
scenario (i) the main problems are that data availability and data protections is solely of the
responsibility of the data owner. In this case, data access would need to be requested to the
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owner each time the data is requested. In addition, there is a higher risk of data loss and in
case it happens the genome needs to be re-sequenced which incurs extra expenses and extra
time. In scenario (ii), the data owner needs to allow the data provider to keep a copy of his/her
data. This scenario might leave the genomic data more exposed than in scenario (i), since the
spare copy is managed by the data provider and the data owner needs to trust it. However, in
case the data owner loses his copy, it can ask the data provider a new copy. In scenario (iii),
allowing the processing entities to also have a copy of the data, means even less control on the
data accesses. Although currently access control is strictly managed, involving other entities
increases the complexity of the process. On the other side, this scenario provides better data
availability.

Although access control have been defined as essential on systems storing and processing
genomic data, its implementation is not yet optimized. Nowadays, data access requests are
reviewed by a specialized committee and last several months.

The storage and processing of genomic data are often outsourced to more cost-efficient and
powerful environments, such as public clouds. However, processing biomedical data on public
clouds can represent an increased information leakage risk when the data is not efficiently pro-
tected. Those risks have been described in [4, 5]. Since the public is an environment accessible
to multiple entities, the data stored in it is more prone to possible access attempts by unau-
thorized entities. In order to take advantage of the computational resources provided by cloud
environments, several solutions have been proposed to perform privacy-preserving computations
on genomic data. However, such solutions are limited to few possible computations and they
require non-negligible computation on a trusted environment. Therefore, further studies are
required on this subject in order to allow the maximization of the resources without sacrificing
performance or privacy.

To conclude, privacy-preserving processing of genomic data has been evolving in the last
decades. Significant advances were made, however, the journey is still not over. In addition to
the improvement points discussed in this section, some other open challenges include: (i) consid-
ering a more realistic threat model, which would include malicious adversaries; (ii) considering
dynamic systems, which tolerate datasets modifications; (iii) ensuring interoperability between
data from different sources and define genomic data privacy standards. First, the most common
threat model considered for the privacy-preserving approaches design is the honest-but-curious
adversary. This model describes an adversary that follows the protocol but might however try
to learn further information about the data. The honest-but-curious adversary model is a mod-
erate model, since the behavior of the adversary is somehow controlled. In practice, malicious
adversaries, which are adversaries that intentionally try to deviate from the protocol to extract
information they do not have the right to access, or perturb the system, form a more realistic
threat model since no assumption is made about their behavior. Second, most of the current
genomic data systems assume static databases, where the datasets are published and are rarely
or never updated. In practice, databases can be updated by the addition or removal of infor-
mation. However, in practice, and considering that the data owner should be able to revoke the
access permissions to his/her data at any time, the databases must allow not only the addition
of information, but also the removal of some data without privacy breaches. This is currently an
open challenge. Last, ensuring the interoperability between data from different sources requires
standardization of the data formats along with the definition of standards for genomic data pri-
vacy. However, currently, the legislation for genomic data protection is not globalized. So far,
each country defines the laws related to genomic data privacy. This complicates data sharing
and collaborations between geo-distributed institutions. However, the research community is
aware of the need for improving this field. Although some entities have been working in the
field, such as Global Alliance (GA4GH), trying to establish some common guidelines and define
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standard methods for genomic data protection.

2.6 Conclusion and Future Work

In the context of DNA computing some applications make use of synthesized DNA that is sim-
ilar to the human DNA, thus this chapter discussed the properties of human DNA and privacy
attacks that consider it. Genomic data is used in multiple fields due to its informative nature,
however, it encodes highly sensitive and personal information that is unique for each individual.
Therefore, privacy is essential on the genomic data life cycle, i.e., storage, sharing and process-
ing. Furthermore, DNA information leakage can result in unwanted and irreversible harm. Once
it is leaked genomic privacy cannot be recovered since DNA is non-revocable. Moreover, intra
and inter genomic data correlations, respectively, among different regions in a DNA sequence
and among family members, can leak additional information, including hidden information if
not adequately handled. The multiple privacy attacks reported on genomic data demonstrated
the main vulnerabilities of current processing algorithms which would not provide enough pri-
vacy protection to the data. This urged the development of privacy-preserving approaches. The
main challenges raised in this field are mainly the protection of data privacy and the practical
performance, since often privacy protection requires performance sacrifices. Privacy-preserving
techniques have been used to allow multiple genomic data applications, although some applica-
tions still remain unprotected. One of the main reasons for these limitations is the performance
and/or data utility sacrifice most of the privacy-preserving techniques imply in order to improve
privacy protection.

Genomic data privacy research has to address several open challenges. The development
of privacy-preserving systems that are able to tolerate malicious adversaries, that intent to
explore vulnerabilities to gain unauthorized access to genomic data, is important since this
threat model is more realistic than the often assumed honest-but-curious adversary. In addition,
the improvement of current privacy-protection techniques to enable updates on the data while
guaranteeing the adequate privacy protection would also be a valuable advance in the field.
More dynamic datasets would allow the production of more accurate statistics to speed up
research. Finally, standardization would benefit the genomic data privacy and allow better
interoperability between data from different sources, for example, from different studies that
collect data in a geo-distributed fashion. Currently per-country laws limit the large potential
of genomic data sharing and research collaborations.
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